

Document: hiDBLUE - APIs Software Interface Reference, Android

Audience: Partners, Designers, Developers - APIs Integrators
Confidentiality Level: Public
Document Owner: Ivan Zilic
Version: 1.2
Date: January 16, 2014
Number of pages: 12
File name: Z:\Dev\Doc\hiDBLUE\hiDBLUE-APIs_SIR_Android.docx

Changes log:

Version Date Author Reason for update
1.0 Apr 17, 2013 Peter Kelpec Initial document
1.1 May 13, 2013 Ivan Zilic Review, minor clarifications, ownership change
1.2 Jan 16, 2014 Martina Krpan Fixed codename text

hiDBLUE - APIs Software Interface Reference, Android

Document version: 1.2 Generated: January 16, 2014 02:47 Page 2 of 12

Table of Contents

1. Scope .. 3

2. General Overview ... 3

3. Deployed Environment and Prerequisites .. 3

4. APIs Usage .. 4

4.1 Initial procedure ... 4

4.2 Data exchange .. 5

5. API Methods ... 6

5.1 Init ... 6

5.2 StartDiscovery... 6

5.3 GetDiscoveredDevices .. 6

5.4 GetPairedDevices ... 6

5.5 Pair .. 7

5.6 Connect ... 7

5.7 StartCommunication .. 7

5.8 Dispose ... 7

5.9 TriggerMouseEvent .. 7

5.10 TriggerKeyEvent .. 8

5.11 ForwardPacket .. 8

5.12 ForwardBroadcast .. 8

5.13 GetState .. 8

5.14 GetStateDetails ... 8

5.15 GetLastException .. 9

5.16 ResetErrorState .. 9

5.17 ForceState ... 9

6. Main application skeleton .. 10

7. Appending .. 11

A. API Constants .. 11

Codename :: Wheel .. 12

hiDBLUE - APIs Software Interface Reference, Android

Document version: 1.2 Generated: January 16, 2014 02:47 Page 3 of 12

1. Scope
This is a reference document intended for Developers implementing their applications using hiDBLUE APIs, on

Android platform.

Additionally, this document can give proper hiDBLUE features overview to Products Designers, during their

products initial brainstorming and design phases.

2. General Overview
The APIs library is middleware between Custom Application(s) and Android native Bluetooth driver. A block

scheme below points to the Interface under scope here:

Computer

Optional

ANDROID device

Custom
Application

hiDBLUE
dongle

APIs

BLUETOOTH APIs
Custom

Application
USB

Interface Specification
covered in this Document

APIs library wraps all hiDBLUE-specific communication details. As a result, it is sufficient to call only API functions

covered in this document for mastering complete set of hiDBLUE features.

Note: “Computer” stands for any device with Operating System supporting HID USB devices (like Apple OS X, MS

Windows, Linux, BSD, Android, etc.) and USB host port present.

3. Deployed Environment and Prerequisites
The APIs are packed in a single jar binary file. Package name is com.flyfish_tech.hidblue.api.

The following table summarizes requirements:

Parameter Value

Android version 2.0 or later

Bluetooth Not absolutely required.
However, if not present, most functions will fail, setting adequate description.

Permissions required android.permission.BLUETOOTH
android.permission.BLUETOOTH_ADMIN

Automatic update Not implemented.
Maintainers of applications are in charge to incorporate updates processes.

Minimum SDK version 5

Target SDK version 10

hiDBLUE - APIs Software Interface Reference, Android

Document version: 1.2 Generated: January 16, 2014 02:47 Page 4 of 12

4. APIs Usage
Make sure that single instance of APIs is simultaneously run in all your applications.

APIs behavior and usage is based on Internal State Machine model. The state information is available via APIs

query calls. Additionally, the state might be forced via a dedicated APIs function call, but it makes sense to do

this only during development, in few rare debugging isolated cases.

4.1 Initial procedure
Initial procedure is straight-forward. The workflow is the following:

Start

APIs Library Init

Start Discovery of
Bluetooth devices
present in range

In case of multiple
hiDBLUE devices, one is

selected (by user)

Perform pairing

Connect

Initialization completed

Applicable APIs functions:

Init
(ForwardBroadcast)

StartDiscovery
(ForwardBroadcast)

GetDiscoveredDevices

Pair
(ForwardBroadcast)

Connect

StartCommunication

Is selected
hiDBLUE device

paired ?

No

Yes GetPairedDevices

hiDBLUE - APIs Software Interface Reference, Android

Document version: 1.2 Generated: January 16, 2014 02:47 Page 5 of 12

4.2 Data exchange
The following four data paths are implemented:

Purpose Source Destination Note

Mouse Android device Computer

Keyboard Android device Computer

Custom Computer Android device Dedicated Application is mandatory on Computer side

Custom Android device Computer Dedicated Application is expected on Computer side

All listed paths can be used simultaneously. Each data packet is internally buffered on its path, with periodic

retries performed, until successfully delivered. Buffering mechanism is FIFO, which guarantees unchanged data

order.

Mouse and Keyboard paths offer one-way data flow only. Destination side doesn’t need any additional custom

code provided by you.

hiDBLUE offers also two custom paths, typically combined into a single custom duplex channel. Format and

content of this data can be freely chosen and is not predefined by APIs in any way. It is up to applications on

both ends to compose and interpret this data.

After successfully performed Initial procedure, the workflow when Android device is data source is the following:

When data is initiated on Computer side, the Main application on Android side receives data packet from APIs

via local broadcast:

hiDBLUE - APIs Software Interface Reference, Android

Document version: 1.2 Generated: January 16, 2014 02:47 Page 6 of 12

5. API Methods

5.1 Init
Syntax boolean Init(Context context, BroadcastReceiver broadcast)

Parameters context – content of the Application, this

 broadcast – broadcast receiver in the Application intended for receiving Bluetooth
broadcasts and passing them to API

Return value boolean, indicates success/fail result of the method

Discussion This method performs various initial internal actions.
If Bluetooth radio is off, this method will turn it on.
The following broadcast filters are set for given broadcast receiver:

 BluetoothAdapter.ACTION_STATE_CHANGED

 BluetoothDevice.ACTION_FOUND

 BluetoothAdapter.ACTION_DISCOVERY_FINISHED

 BluetoothDevice.ACTION_BOND_STATE_CHANGED

Typical Method fail result would be caused by absent Bluetooth. Call GetStateDetails to
get actual error code.

5.2 StartDiscovery
Syntax boolean StartDiscovery()

Parameters None

Return value boolean, indicates success/fail result of the method

Discussion This method initiates scan of Bluetooth devices present in range.
The scan typically takes about 12 seconds to complete. This method returns immediately,
leaving APIs in scan (busy) mode.
During scan mode, the state returned by GetState is STATE_BUSY and GetStateDetails
returns DETAIL_DEVICES_SCAN_IN_PROGRESS.
The scan procedure is completed when state changes to STATE_DEVICES_SCAN_COMPLETED.

5.3 GetDiscoveredDevices
Syntax String[][] GetDiscoveredDevices()

Parameters None

Return value 2D strings array.
One row per discovered device (first array dimension).
The array contains two columns (second array dimension). Columns are Name of the device and
related MAC address.

Description Returned data is collected during bluetooth devices scan, initiated by StartDiscovery call.
Returned list is limited to hiDBLUE discovered devices only.

5.4 GetPairedDevices
Syntax String[][] GetPairedDevices()

Parameters None

Return value 2D strings array.
One row per paired device (first array dimension).
The array contains two columns (second array dimension). Columns are Name of the device and
related MAC address.

Description Returned list is limited only to hiDBLUE paired devices which were just found during discovery
scan.

hiDBLUE - APIs Software Interface Reference, Android

Document version: 1.2 Generated: January 16, 2014 02:47 Page 7 of 12

5.5 Pair
Syntax boolean Pair(String MAC)

Parameters MAC – MAC address of the device. String should contain six groups of two hexadecimal
digits, separated by colons. Example: 00:06:66:4D:54:86

Return value boolean, indicates success/fail result of the method

Description This method invokes Android’s native pairing UI.
Given MAC address must belong to any hiDBLUE device found during discovery scan.

Pairing PIN code is “ff”.

5.6 Connect
Syntax boolean Connect(String MAC)

Parameters MAC – MAC address of the device. String should contain six groups of two hexadecimal
digits, separated by colons. Example: 00:06:66:4D:54:86

Return value boolean, indicates success/fail result of the method

Description Given MAC address must belong to any hiDBLUE device found during discovery scan.
Additionally, the device already has to be paired.

5.7 StartCommunication
Syntax boolean StartCommunication()

Parameters None

Return value boolean, indicates success/fail result of the method

Description This method launches communication threads.
At this point, the Main application has to be prepared for receiving data packet (if applicable).

5.8 Dispose
Syntax void Dispose()

Parameters None

Return value None

Description This method must be executed at the end of the APIs usage. It performs cleanup procedure.
APIs can be re-initialized afterwards with Init method and complete Initial procedure run.

5.9 TriggerMouseEvent
Syntax boolean TriggerMouseEvent(byte xDiff, byte yDiff, byte wheelDiff,

boolean button1Pressed, boolean button2Pressed, boolean

button3Pressed, boolean holdButtons)
Parameters xDiff – relative mouse pointer movement on X axis. Valid values are -127 to 127

 yDiff – relative mouse pointer movement on Y axis. Valid values are -127 to 127

 wheelDiff – relative wheel movement. Valid values are -127 to 127

 button1Pressed – set left button state to either clicked (true) or not (false)

 button2Pressed – set right button state to either clicked (true) or not (false)

 button3Pressed – set middle button state to either clicked (true) or not (false)

 holdButtons – when set to true, buttons set above remain in pressed position, else they are
immediately released

Return value boolean, indicates success/fail result of the method

Description This method controls mouse behavior on remote side. Mouse data from hiDBLUE is not

hiDBLUE - APIs Software Interface Reference, Android

Document version: 1.2 Generated: January 16, 2014 02:47 Page 8 of 12

exclusive, resulting in cumulative effect in case of additional mouse existence.

5.10 TriggerKeyEvent
Syntax boolean TriggerKeyEvent(byte codeKeyMain, byte codeKeyAlternate,

boolean clickOnly)
Parameters codeKeyMain – USB keyboard key code, see Description below

 codeKeyAlternate – USB keyboard alternate code, see Description below

 clickOnly – when set to false, key set above remains in pressed position, else it is
immediately released

Return value boolean, indicates success/fail result of the method

Description This method controls keyboard behavior on remote side. Keyboard data from hiDBLUE is not
exclusive, resulting in cumulative effect in case of additional keyboard existence.

Codes to be used as parameters value are listed in “Universal Serial Bus HID Usage Tables”
document, Chapter 10. The document is available for download from USB.org webpage
(http://www.usb.org/developers/devclass_docs/Hut1_12v2.pdf)

5.11 ForwardPacket
Syntax boolean ForwardPacket(byte dataPacket[])

Parameters dataPacket – array of bytes to be delivered to Computer side

Return value boolean, indicates success/fail result of the method

Description This method is used when data packet is to be delivered to Computer’s Custom Application.
Maximum parameter array size is 8 bytes. When larger amount of data needs to be sent, it shell
be split into smaller chunks size up to 8 bytes and send in a sequence. The same chunks order
appearance is guaranteed on receiver side.

5.12 ForwardBroadcast
Syntax void ForwardBroadcast(Intent intent)

Parameters intent – facility for processing Bluetooth broadcasts

Return value None

Description This method is called on receiving event of broadcasts. If the broadcast is not Bluetooth-
related, it is silently ignored by APIs.

5.13 GetState
Syntax int GetState()

Parameters None

Return value Integer value representing internal APIs state. Values set is listed in Appendix section below.

Description Main application should call this method to check APIs internal state prior to performing any
step during Initial procedure.

5.14 GetStateDetails
Syntax int GetStateDetails()

Parameters None

Return value Integer value representing internal APIs substate. Values set is listed in Appendix section below.

Description Main application should call this method to gather additional information about State. Typical
usages are in case of errors, when this method returns type of error.

http://www.usb.org/developers/devclass_docs/Hut1_12v2.pdf

hiDBLUE - APIs Software Interface Reference, Android

Document version: 1.2 Generated: January 16, 2014 02:47 Page 9 of 12

5.15 GetLastException
Syntax Exception GetLastException()

Parameters None

Return value Exception containing error details.

Description This method is applicable when GetStateDetails method returns ERROR_EXCEPTION. In
this case further information is available by calling this method.

5.16 ResetErrorState
Syntax void ResetErrorState()

Parameters None

Return value None

Description After the error reason is solved, this method is to be called to restore pre-error state.

5.17 ForceState
Syntax void ForceState(int state)

Parameters state – numeric state of internal APIs state

Return value None

Description This function is intended only for debugging purpose of Main application, during development
phase.

Make sure that your production code does not include any call to this method.

hiDBLUE - APIs Software Interface Reference, Android

Document version: 1.2 Generated: January 16, 2014 02:47 Page 10 of 12

6. Main application skeleton
Two Broadcast Receivers are to be implemented in the Main application to serve APIs. First one is mandatory,

involved during initial procedure, and the second one during Data exchange.

 Initial procedure expects some broadcasts containing Bluetooth events data. This data needs to be

grabbed with Broadcast Receiver implemented in the Main application and forward to the APIs. Example

of sufficient related code in the Main application is the following:

private final BroadcastReceiver BluetoothEventsReceiver = new BroadcastReceiver() {

 @Override

 public void onReceive(Context context, Intent intent) {

 API.ForwardBroadcast(intent);

 }

};

In this case, BluetoothEventsReceiver is to be passed as a second parameter to Init APIs method call.

 Second Broadcast Receiver acts as entry point for data packets received from Computer side. Example of

this receiver is the following:

private final BroadcastReceiver APIDataReceiver = new BroadcastReceiver() {

 @Override

 public void onReceive(Context context, Intent intent) {

 Bundle bundle = intent.getBundleExtra("Packet");

 if (bundle.getString("Content") == "Raw") {

int datalen = bundle.getInt("DataLen");

byte[] data = new byte[datalen];

data = bundle.getByteArray("Data");

ProcessReceivedAPIData(data);

 }

 }

};

In this example, ProcessReceivedAPIData is to be implemented in the Main application to interpret

received data.

hiDBLUE - APIs Software Interface Reference, Android

Document version: 1.2 Generated: January 16, 2014 02:47 Page 11 of 12

7. Appending

A. API Constants
Internal State Machine constants:

Name Value
STATE_LIB_INIT 0
STATE_DEVICES_SCAN_REQUIRED 1
STATE_DEVICES_SCAN_COMPLETED 2
STATE_DEVICE_PAIRED 3
STATE_CONNECTED 4
STATE_ONLINE 5
STATE_DISPOSED 6
STATE_ERROR 7
STATE_BUSY 8

Internal State Machine Details constants:

Name Value
DETAIL_NONE 0
DETAIL_TURNING_BLUETOOTH_ON 1
DETAIL_DEVICES_SCAN_IN_PROGRESS 2
DETAIL_DEVICE_PAIRING_IN_PROGRESS 3
ERROR_BLUETOOTH_NOT_PRESENT 4
ERROR_NO_DEVICES 5
ERROR_PAIRING_FAILED 6
ERROR_PEER_NOT_FOUND 7
ERROR_DEVICE_NOT_PAIRED 8
ERROR_SOCKET_NOT_AVAILABLE 9
ERROR_STREAM_NOT_OPENED 10
ERROR_IMPROPER_USAGE 11
ERROR_BUFFER_OVERFLOW 12
ERROR_EXCEPTION 13

hiDBLUE - APIs Software Interface Reference, Android

Document version: 1.2 Generated: January 16, 2014 02:47 Page 12 of 12

Codename :: Wheel

WHO INVENTED THE WHEEL ?

Nobody knows.

It is believed that the first wheels were used
in Mesopotamia in the 4th millennium B.C.
The wheels supposedly spread all over the
world from there.

Some ascribe the invention of the wheel to
prehistoric Europe.

World oldest wooden wheel with axle
 City Museum Ljubljana, photo Matevž Paternoster

The oldest wooden wheel in the world, which is over 5000 years old according to the analyses, was found while
researching the crannog settlement at location Stara gmajna pri Vrhniki, Slovenia.

In the spring of 2002, a team from the Slovenian Institute of Archaeology continued with the project of wood
sampling at the mentioned location. A surprise awaited them in one of the drainage ditches. Besides rich findings
and two dugouts, they also found the remains of a wooden wheel at the bottom of the ditch that had already
been partially damaged by construction machines when they were deepening the ditch. The ditch was widened
at the site of the discovery so that they also found the axle that had become separated from the wheel.

The wheel was composed of two ash wood plates that were connected by four oak wedges and had a
rectangular aperture in the center, where the axle was mounted. Its diameter was 72cm (28 inch) and it had a
thickness of approximately 5cm (2 inch). According to the dendrochronological research the wheel was made
from ash wood that comprises both plates, a trunk with the diameter of at least 40cm (16 inch) and was made
from a tree that was approximately 80 years old. The choice of ash was not coincidental, because of its strength
and because it grew in the vicinity of the crannogs and because it can grow to the dimensions that were needed
for large boards without any knots. The axle was constructed from one piece of oak wood and was 124cm (49
inch) long. The ending of the axle was rectangular and fitted into the opening of the wheel. The axle was
attached to the wheels with oak wood wedges, which meant that the axle rotated together with the wheels.

According to the opinion of the experts, the wheel and the axle were a part of a two-wheel cart – a pushcart.

The wheel and the axle were dated on the basis of stratigraphic data with dendrochronological research and
with the radiocarbon method. The wheel is approximately 5,150 years old and is contemporary with the
settlement of Stara gmajna, where it was discovered. Radiocarbon dating was performed in the VERA laboratory
(Vienna Environmental Research Accelerator) in Vienna, Austria.

(Source: http://www.koliscar.si)

FLYFISH TECHNOLOGIES headquarters is located about 20 kilometers (12 miles) north-east from the location
where this world oldest wooden wheel has been found.

