

Raspberry Pi ADD-ONs habitat

Compatibility Specification

Revision Log:

Date Author Reason for update

14-Mar-2014 Ivan Zilic Initial Draft

 Raspberry Pi ADD-ONs habitat

14-Mar-2014 5:26 AM Page 2 of 18

1 Scope ... 3

2 Entities .. 3

3 GPIO add-on boards .. 4

3.1 Boards configurations ... 4

3.1.1 Single add-on board .. 4

3.1.2 Multiple add-on boards .. 5

3.2 Boards query and selection... 7

3.2.1 Commands .. 7

3.2.1.1 Set backward compatibility ... 7

3.2.1.2 Reset ... 8

3.2.1.3 Initialize ... 8

3.2.1.4 Search .. 8

3.2.1.5 No operation ... 9

3.2.1.6 Select board .. 9

3.2.1.7 Read configuration .. 10

3.2.1.8 Write configuration ... 10

3.2.1.9 Lock mutex .. 11

3.2.1.10 Unlock mutex .. 11

3.2.1.11 Is mutex locked ... 11

3.2.2 Signals Timing .. 12

3.2.2.1 Bit time slot ... 12

3.2.2.2 Byte time slot .. 13

3.2.2.3 Command time slot ... 13

3.2.2.4 Checksums .. 13

3.2.2.5 Exception: Backward compatibility ... 13

3.3 Conflicts and malfunction prevention .. 14

4 USB boards .. 15

5 Unified software support .. 16

6 Global database .. 17

7 Misc ... 18

 Raspberry Pi ADD-ONs habitat

14-Mar-2014 5:26 AM Page 3 of 18

1 Scope

The scope of this document is to specify Raspberry Pi add-ons requirements in terms of:

 Hardware detection

 Unified software support

 Conflicts and malfunction prevention

Covered interfaces are GPIO port and USB.

2 Entities

The specification is based on the following main features for entities:

 Add-on board type has unique ID, which is a combination of Vendor ID and Product ID,

 Global database contains relations between the add-on boards ID and properties,

 Raspberry Pi can check boards coexistence issues,

 Application (Scratch) can find out what are capabilities of attached add-on board(s) and can
communicate with them in a generalized way.

 Raspberry Pi ADD-ONs habitat

14-Mar-2014 5:26 AM Page 4 of 18

3 GPIO add-on boards

In order to detect present boards and to query them in a generalized way, one dedicated GPIO pin is

required. GPIO pin 25 is reserved exclusively and is not to be used for any other purpose by any

attached add-on board.

3.1 Boards configurations

This specification allows the following combinations of compatible add-on boards:

 Single add-on board,

 Multiple add-on boards stacked:
o Each board is unique,
o Several equal boards present alone,
o Several equal boards present next to one or more unique boards.

3.1.1 Single add-on board

Any compatible add-on board can be present alone.

The board type A doesn’t have male GPIO connector suitable tor stacking:

The board type B has male GPIO connector and is suitable for stacking. GPIO pin 25 is directly routed to

male GPIO connector (one unique board supported):

 Raspberry Pi ADD-ONs habitat

14-Mar-2014 5:26 AM Page 5 of 18

The board type C has male GPIO connector and is suitable for stacking. GPIO pin 25 is daisy-chained to

male GPIO connector (multiple equal boards supported):

3.1.2 Multiple add-on boards

Boards can be stacked in several configurations.

Various unique boards can be stacked together:

Multiple equal boards having GPIO pin 25 daisy-chained to male GPIO connector can be stacked:

 Raspberry Pi ADD-ONs habitat

14-Mar-2014 5:26 AM Page 6 of 18

Mixture of all board types can coexist:

 Raspberry Pi ADD-ONs habitat

14-Mar-2014 5:26 AM Page 7 of 18

3.2 Boards query and selection

One-pin communication protocol is introduced with the following key features:

 Bidirectional communication,

 Raspberry Pi is bus master, add-on boards are slaves,

 Communication is initiated by the Raspberry Pi.

3.2.1 Commands

 Required implementation

Command Broadcast Board type A Board type B Board type C

Set backward compatibility Yes Yes Yes Yes

Reset Yes Yes Yes Yes

Initialize Yes Yes Yes

Search Yes Yes Yes Yes

No operation Yes Yes Yes Yes

Select board Optional Optional Yes

Read configuration Yes Yes Yes

Write configuration Yes Yes Yes

Lock mutex Yes Yes Yes

Unlock mutex Yes Yes Yes

Is mutex locked Yes Yes Yes

3.2.1.1 Set backward compatibility

Syntax 0x00

Parameters None

Response None

Return values None

Discussion The command switches board to backward compatibility mode.

Upon receiving this command, the board must set Board Selected flag (applicable to
boards type C) and set their mutex flag to unlock state.

Boards exit backward compatibility mode with Reset command.

See also Exception: Backward compatibility.

 Raspberry Pi ADD-ONs habitat

14-Mar-2014 5:26 AM Page 8 of 18

3.2.1.2 Reset

Syntax 0x5A

Parameters None

Response None

Return values None

Discussion The command resets all boards’ internal variables and states to power-on values.
Daisy-chain position is also cleared.

Next command to be executed is either Search or Set backward compatibility.

3.2.1.3 Initialize

Syntax 0x56 VendorID[3] ProductID[2] ChainLink

Parameters VendorID – 3-bytes identificator of the board’s vendor

 ProductID – 2-bytes code of the board, as defined by the vendor

 ChainLink – one byte, specifies position of the board in the daisy chain to be
selected; one-based index

Response 0xA5

Return values Acknowledge

Discussion The command initializes board’s internal variables and states.

It is expected that the board performs also initialization procedures for its
components/modules.

This command is executed also as master’s acknowledge of a successfully received
response to the Search command.

Example Master initializes the 2nd board with ID 0xABCD made by vendor with ID 0x000123:
0x56 0x00 0x01 0x23 0xAB 0xCD 0x02

3.2.1.4 Search

Syntax 0x52

Parameters None

Response VendorID[3] ProductID[2]

Return values VendorID – 3-bytes identificator of the board’s vendor

 ProductID – 2-bytes code of the board, as defined by the vendor

Discussion This is command triggers boards to respond with their ID (VendorID and ProductID).

The command is ignored by boards which already received
Initialize command.

 Raspberry Pi ADD-ONs habitat

14-Mar-2014 5:26 AM Page 9 of 18

3.2.1.5 No operation

Syntax 0x50

Parameters None

Response None

Return values None

Discussion This command is never sent by the master. It mutates from a Search command.

When a board with a daisy chain feature is not initialized yet and it receives a
command bit stream starting with 0b010100 (the command is going to be either
Search or No operation), it forces remaining two bits passed to next boards in the daisy
chain to be 0.
This mutation guarantees that only the first uninitialized board in the daisy chain
responds to search query.

3.2.1.6 Select board

Syntax 0x90 VendorID[3] ProductID[2] ChainLink

Parameters VendorID – 3-bytes identificator of the board’s vendor

 ProductID – 2-bytes code of the board, as defined by the vendor

 ChainLink – one byte, specifies position of the board in the daisy chain to be
selected; one-based index

Response 0xA5

Return values Acknowledge

Discussion The command allows selection of a board in configuration where multiple equal boards
are present. All further commands addressed with the VendorID and ProductID are
processed only by the board selected.

There is no deselect command. Currently selected board gets deselected when another
board in the chain is selected.

When boards type A and B contain elements that can have impact on another stacked
boards performances, they should implement this command in order to
disable/disconnect these elements from GPIO bus. See Conflicts and malfunction
prevention for details.

Example Master selects the 2nd board with ID 0xABCD made by vendor with ID 0x000123:
0x90 0x00 0x01 0x23 0xAB 0xCD 0x02

 Raspberry Pi ADD-ONs habitat

14-Mar-2014 5:26 AM Page 10 of 18

3.2.1.7 Read configuration

Syntax 0x92 VendorID[3] ProductID[2] DataLength

Parameters VendorID – 3-bytes identificator of the board’s vendor

 ProductID – 2-bytes code of the board, as defined by the vendor

 DataLength – one byte, number of bytes in Data array; valid value between 1 and 32
inclusive

Response Data[]

Return values Data array, number of bytes equals to DataLength

Discussion The command retrieves up to 32 bytes of stored configuration.

The data content is not covered by this specification; it is up to the vendor to freely
define the length and placeholders. The typical use case would be to use the board’s
sensor’s calibration values.

Example Master requests 5 bytes from the selected board with ID 0xABCD made by vendor with
ID 0x000123:

0x92 0x00 0x01 0x23 0xAB 0xCD 0x05

3.2.1.8 Write configuration

Syntax 0x95 VendorID[3] ProductID[2] DataLength Data[]

Parameters VendorID – 3-bytes identificator of the board’s vendor

 ProductID – 2-bytes code of the board, as defined by the vendor

 DataLength – one byte, number of bytes in Data array; valid value between 1 and 32
inclusive

 Data – data array to be stored in the board

Response 0xA5

Return values Acknowledge

Discussion The command stores up to 32 bytes of configuration.

The data content is not covered by this specification; it is up to the vendor to freely
define the length and placeholders. The vendor can implement the configuration data,
all or partially, to be read-only. Even if the complete configuration is read-only, the
board returns acknowledge.

When the configuration is stored on the board in slower non-volatile memory, the
board should return acknowledge as a result of properly received command.

It is recommended that the application checks the modification by performing Read
configuration command few tenths of a second later.

The typical use case would be defining the board’s power-on state of outputs.

Example Master writes 5 data bytes to the selected board with ID 0xABCD made by vendor with
ID 0x000123:

0x95 0x00 0x01 0x23 0xAB 0xCD 0x05 0x44 0x44 0x44 0x44 0x44

 Raspberry Pi ADD-ONs habitat

14-Mar-2014 5:26 AM Page 11 of 18

3.2.1.9 Lock mutex

Syntax 0x99 VendorID[3] ProductID[2]

Parameters VendorID – 3-bytes identificator of the board’s vendor

 ProductID – 2-bytes code of the board, as defined by the vendor

Response 0xA5

Return values Acknowledge

Discussion The command sets a mutex flag value.

The board operation is independent of this flag. Its purpose is to allow implementation
of a mechanism to prevent applications race conditions.

Example Master sets mutex flag for the selected board with ID 0xABCD made by vendor with ID
0x000123:

0x99 0x00 0x01 0x23 0xAB 0xCD

3.2.1.10 Unlock mutex

Syntax 0x9C VendorID[3] ProductID[2]

Parameters VendorID – 3-bytes identificator of the board’s vendor

 ProductID – 2-bytes code of the board, as defined by the vendor

Response 0xA5

Return values Acknowledge

Discussion The command clears a mutex flag value.

The board operation is independent of this flag. Its purpose is to allow implementation
of a mechanism to prevent applications race conditions.

Power-on flag value is cleared. The flag is cleared also by the Reset command.

Example Master clears mutex flag for the selected board with ID 0xABCD made by vendor with
ID 0x000123:

0x9C 0x00 0x01 0x23 0xAB 0xCD

3.2.1.11 Is mutex locked

Syntax 0x9F VendorID[3] ProductID[2]

Parameters VendorID – 3-bytes identificator of the board’s vendor

 ProductID – 2-bytes code of the board, as defined by the vendor

Response 0xFF or 0xA5

Return values When the mutex flag is set, returned value is 0xFF.
Cleared flag is indicated by returning 0xA5.

Discussion The command returns a mutex flag value.

The board operation is independent of this flag. Its purpose is to allow implementation
of a mechanism to prevent applications race conditions.

Example Master clears mutex flag for the selected board with ID 0xABCD made by vendor with
ID 0x000123:

0x9C 0x00 0x01 0x23 0xAB 0xCD

 Raspberry Pi ADD-ONs habitat

14-Mar-2014 5:26 AM Page 12 of 18

3.2.2 Timing

Base timing unit is 10µs. Tolerances are ±5%.

3.2.2.1 Bit time slot

 Raspberry Pi ADD-ONs habitat

14-Mar-2014 5:26 AM Page 13 of 18

3.2.2.2 Byte time slot

3.2.2.3 Command time slot

3.2.2.4 Checksums

Each command and response packet contains a 2-bytes trailing CRC checksum.

CRC polynomial is X16 + X12 + X5 + 1.

3.2.2.5 Exception: Backward compatibility

Backward compatibility can be activated with the Set backward compatibility command. Another option

is to hold GPIO pin 25 permanently low.

 Raspberry Pi ADD-ONs habitat

14-Mar-2014 5:26 AM Page 14 of 18

3.3 Conflicts and malfunction prevention

By stacking various add-on boards, several potential issues are introduced.

After the Raspberry Pi detects add-on boards presence, it can perform various checks. The checks
include:

 GPIO pins usage conflicts (eg. one board has pull-up resistor attached to one GPIO pin, where
the other has pull-down resistor attached to this same pin.)

 Bus address conflicts (eg. more boards have the same I2C device with equal address defined)

 GPIO overcurrent case (eg. more boards have LED attached to the same GPIO pin)

 Overall power consumption of each board can be summarized and checked against maximum
power consumption allowed.

A standalone tool should be implemented to perform these checks on user’s request. Optionally, the

tool could contain an option to check potential issues when a planned add-on board would be added to

existing configuration.

The specification allows improved prevention actions performed by each board. If the board has

implemented Select board command (mandatory for type C boards, optional for type A and B boards),

then it can disable its various modules which could cause conflicts and/or malfunction of another

stacked board.

Key role during the checking procedure has a global database. It contains related data details for each

board following this specification. See Global database chapter for further details.

 Raspberry Pi ADD-ONs habitat

14-Mar-2014 5:26 AM Page 15 of 18

4 USB boards

To be defined…

 Raspberry Pi ADD-ONs habitat

14-Mar-2014 5:26 AM Page 16 of 18

5 Unified software support

There are two layers of software support:

 Pin/Port layer

 Data layer

The Pin/Port layer deals with signals and buses. It exposes interface to:

 Set features (eg. set pin direction, enable pull-ups)

 Set digital outputs

 Read digital inputs

 Set PWM outputs

 Write and read byte array to/from SPI bus

 Write and read byte array to/from I2C bus

 Write and read byte array to/from UART

 Sets analog outputs

 Reads analog inputs

 More to be defined…

The Data layer is a wrapper around the Pin/Port layer and deals with content. It exposes interface to:

 Sensors (get temperature, acceleration, humidity, light intensity, …)

 LCDs (display data)

 Various I/O chips

 More to be defined…

Further text to be added…

 Raspberry Pi ADD-ONs habitat

14-Mar-2014 5:26 AM Page 17 of 18

6 Global database

Global database has the following key purposes:

 Straight-forward unified support by software, each hardware feature is implemented only once

 Overview of all (currently) supported and unsupported features of the user’s particular
configuration

 Conflicts and malfunction detection / prevention when more boards are stacked

 Software support planning (overview about available add-on boards and missing (partial)
support)

A record for each supported add-on board contains the following data:

 Vendor ID

 Product ID

 Type of the board (A/B/C)

 Is Select board command implemented (applicable to type A and B boards)

 Maximum overall current consumption

 I2C addresses occupied

 Are I2C devices disabled with Select board command (if applicable)

 For each GPIO data pin:
o Pin type (input, output, bidirectional, OC, etc.)
o Does Select board command switches it to hi-Z state
o Maximum current sink at “1” (applicable when pin is input or bidirectional)
o Maximum current sink at “0” (applicable when pin is input or bidirectional)
o Value of pull-up resistor (when applicable)
o Value of pull-down resistor (when applicable)
o Can the pull resistor be disabled (applicable when Select board command is

implemented)
o Is an element with higher capacitance connected to the pin (eg. FET’s Gate pin); limit

capacitance to be defined…

 For each software-controllable module (relation to software’s Data layer):
o Module ID (according to Index of modules)
o Parent Module ID (applicable eg. when the sensor chip is attached to the board internal

I/O expander)
o Software driver/handler configuration parameters (eg. pins or addresses)

Index of modules is a superset of modules/elements which any supported board contains. The following
data is included for each module:

 Module ID

 Chip/Module (eg. sensor label)

 Software driver/handler ID (applicable when becomes supported)

 Version of the software when the module became supported

Records for USB devices to be defined…

 Raspberry Pi ADD-ONs habitat

14-Mar-2014 5:26 AM Page 18 of 18

7 Misc

GPIO pin 25 protocol can be handled by a dedicated chip or as a functionality of the board’s main

processor.

Vendor ID is assigned to the vendor by the global database maintainer.

When a vendor develops a new add-on board, it should provide data for the database record as a part of

the development procedure.

For DIY hobbyists a dedicated Vendor ID could be assigned with Product ID matrix covering all kind of

modules.

